Capitolo 12

Numeri complessi

Soluzioni Esercizi

Esercizio 12.6.1. Calcolare e disegnare sul piano complesso tutti gli $z \in \mathbb{C}$ tali che |z|=2.

Soluzione Esercizio: Se z=a+bi, avremo $a^2+b^2=4$, quindi gli z cercati formano una circonferenza di raggio 2 nel piano complesso come mostra la Figura 12.1.

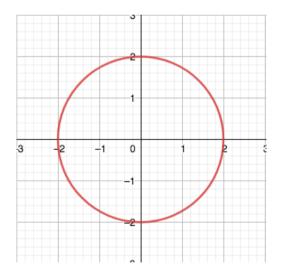


Figura 12.1: Esercizio 12.6.1.

Esercizio 12.6.2. Calcolare e disegnare sul piano complesso tutti gli $z \in \mathbb{C}$ tali che $arg(z) = \pi/4$.

Soluzione Esercizio: Glizcercati formano la semiretta in Figura 12.2 nel piano complesso.

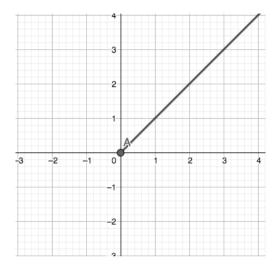


Figura 12.2: Esercizio 12.6.2.

Esercizio 12.6.3. Disegnare sul piano complesso il punto $z \in \mathbb{C}$ tale che |z|=1 e $arg(z)=3\pi/2$.

Soluzione Esercizio: Avremo $a^2+b^2=1$ e $a=\cos(3\pi/2)=0,$ mentre $b=\sin(3\pi/2)=-1,$ quindi z=-i come in Figura 12.3.

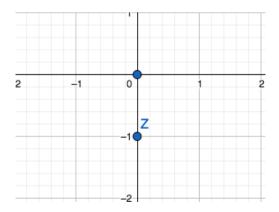


Figura 12.3: Esercizio 12.6.3.

Esercizio 12.6.4. Calcolare in modo esplicito le seguenti espressioni: $(3-i)^3$, $i^{19}-i^{11}$, $(-1)^{1/3}$, $(i)^{1/6}$.

Soluzione Esercizio:
$$(3-i)^3 = 3^3 - 9i - 3 - i^3 = 24 - 8i$$
. $i^{19} - i^{11} = -i - (-i) = 0$. $(-1)^{1/3} = \sqrt[3]{-1}$, che ha tre possibili valori: $-1, \frac{1}{2} + \frac{\sqrt{3}i}{2}$ e $\frac{1}{2} - \frac{\sqrt{3}i}{2}$. $(i)^{1/6}$ ha sei possibili valori: $e^{\frac{\pi}{12} + k\frac{\pi}{3}}, \ k = 0, \dots, 5$.

Esercizio 12.6.5. Verificare la seguente uguaglianza: $(\overline{z}i+1)/2=z$.

Soluzione Esercizio: Se z = a + ib, avremo:

$$(\overline{z}i+1)/2 = (a-ib)i+1/2 = ai+b+1/2 = b/2+ai/2 \neq z$$

L'uguaglianza non è verificata.

Esercizio 12.6.6. Disegnare su piano complesso l'insieme:

$$\{z \in \mathbb{C} \mid |z + 2i| = |z - 1|\}.$$

Soluzione Esercizio: Riscriviamo l'equazione data evidenziando parte reale e parte immaginaria di z = x + iy e otteniamo |x + iy + 2i| = |x + iy - 1|, raggruppando parti reali e parti immaginare abbiamo |x + i(2 + y)| = |(x - 1) + iy|, svolgendo il modulo si trova $x^2 + (2 + y)^2 = (x - 1)^2 + y^2$ che risulta essere 2x + 4y + 3 = 0. Dunque l'insieme dato si rappresenta nel piano complesso come un retta (vedi Figura 12.4).

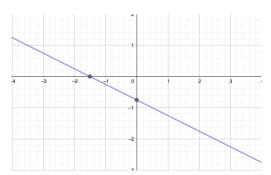


Figura 12.4: Esercizio 12.6.6.

Esercizio 12.6.7. Risolvere la seguente equazione $2z^2 + 5z - 1 = 0$.

Soluzione Esercizio: Avremo: $z=\frac{-5\pm\sqrt{33}}{2}$: le due soluzioni sono reali.

Esercizio 12.6.8. Data l'equazione $z^2 + \lambda z - 2i(1+i) = 0$, determinare λ in modo tale che z = 2 + i ne sia soluzione. Per tale valore di λ determinare l'altra radice.

Soluzione Esercizio: Sostituendo z=2+i nell'equazione avremo: $(2+i)^2+\lambda(2+i)-2i(1+i)=4-1+4i+2\lambda+\lambda i-2i+2=5+2\lambda+(2+\lambda)i=0,$ quindi dovremmo avere $5+2\lambda=0$ e $2+\lambda=0$, il che è impossibile.

Esercizio 12.6.9. Risolvere la disequazione

$$z\overline{z} + 2z + 2\overline{z} < 4.$$

Soluzione Esercizio: Scriviamo z=x+ib. Otteniamo $x^2+y^2+4x-4<0$ ossia $y^2<-x^2-4x+4$ che ammette soluzione se e solo se $-x^2-4x+4>0$ ossia solo se $-2-\sqrt{8}< x<-2+\sqrt{8}$. La soluzione sarà data da quegli z=x+iy tali che la x soddisfa la condizione appena scritta e la y è tale che: $-\sqrt{-x^2-4x+4}< y<\sqrt{-x^2-4x+4}$.

Esercizio 12.6.10. Scrivere nella forma algebrica, trigonometrica ed esponenziale il numero $z \in \mathbb{C}$, corrispondente a $(1, \sqrt{3})$ in rappresentazione cartesiana.

Soluzione Esercizio: Forma algebrica: $z = 1 + i\sqrt{3}$; forma trigonometrica $z = 2\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)$; forma esponenziale: $z = 2e^{i\frac{\pi}{3}}$.

Esercizio 12.6.11. Risolvere l'equazione $(27i - z^3)(z^2 - iz + 12) = 0$.

Soluzione Esercizio: È già fattorizzata quindi avremo che tale equazione sarà verificata o se il primo fattore si annulla o se il secondo fattore si annulla.

Il primo fattore si annulla per le z che sono radici cubiche di 27i ossia $z = 3\left(\cos\left(\frac{1}{3}\left(\frac{\pi}{2} + 2k\pi\right)\right) + \sin\left(\frac{1}{3}\left(\frac{\pi}{2} + 2k\pi\right)\right)\right)$ per k = 0, 1, 2. Il secondo fattore invece si annulla per z = -3i, 4i.

Esercizio 12.6.12. Risolvere l'equazione $i\cos\theta + \sin\theta = ie^{i\theta} + 1$.

Soluzione Esercizio: Riscriviamo il secondo membro in forma trigonomoetrica e otteniamo $i\cos\theta+\sin\theta=i(\cos\theta+i\sin\theta)+1$ da cui $i\cos\theta+\sin\theta=i\cos\theta-\sin\theta+1$. Semplificando $2\sin\theta=1$. Quindi $\sin\theta=1/2$, perciò $\theta=\pi/6,5\pi/6$.

Esercizio 12.6.13. Verificare che $\forall z \in \mathbb{C}$, si ha $\sin 2z = 2\sin z \cos z$.

Soluzione Esercizio: Basta riscrivere entrambi i membri dell'uguaglianza in forma esponenziale.

Il primo membro $\sin 2z = \frac{e^{2iz} - e^{-2iz}}{2i}$.

Il secondo membro $2\sin z\cos z=2\frac{e^{iz}-e^{-iz}}{2i}\frac{e^{iz}+e^{-iz}}{2}=\frac{e^{2iz}-e^{-2iz}}{2i}=\sin 2z$ come volevasi dimostrare.